
Por José Luis Suárez Rodríguez
La serie de ternas pitagóricas que tienen como catetos impares los números: 7, 15, 63, 255, 16383, 262143…, que figuran en OEIS como sucesión A 279882, y tienen como catetos pares la sucesión de números perfectos no unitarios, formada por los elementos sucesivos: 24, 112, 1984, 32512, 134201344, 34359476224, 549754765312… (OEIS A064591), mantienen como hipotenusas de las ecuaciones pitagóricas correspondientes los números: 25, 113, 1985, 32513, 134201345, 34359476225, 549754765313…
Se trata de un conjunto pitagórico indefinido, cuya naturaleza aritmológica encierra la elucidación del misterio, reservado por la Escuela, de la resolución de los números perfectos, tema que la mathesis moderna abocó a grandes especulaciones de la Teoría de los números, aún sin cierre.
Aquí exponemos, más que por revelación por intuición, el procedimiento, conseguido y no desvelado, de la formación conjetural, con tendencia al límite racional, de los números perfectos según el método pitagórico.
Con la simplicidad heurística que caracteriza a la aritmética de Pitágoras, heredada por Euclides de Megara y seguida por Nicómaco de Gerasa, investigando su epistemología numérica, hemos averiguado:
1) La formación del sistema de ecuaciones pitagóricas indefinido, productivo de los números perfectos con arreglo a las ternas:
7. 24. 25
15. 112. 113
63. 1984. 1985
255. 32512. 32513
16383. 134201344. 134201345
262143. 34359476224. 34359476225
…... ….. ….. ….. ….. …... ….. …..
2) Que los (n-1) /2 de los referidos catetos impares de las ecuaciones pitagóricas consiguientes, multiplicados por los (n+1) /2 de los mismos, dan lugar a la siguiente serie de multiplicaciones, cuyos resultados, duplicados, producen los catetos pares de la ecuación correspondiente, cuya cuarta parte es el número perfecto adecuado en el lugar n del sistema.
Así:
3*4 = 12 24 / 4=6
7*8 = 56 112 / 4=28
31*32 = 992 1984 / 4=496
127*128 = 16256 32512 / 4=8128
8191*8192 = 67100672 134201344 / 4=33550336
131071*131072 = 17179738112 34359476224 / 4=8589869056
…... ….. ….. ….. ….. …... ….. ….. …... ….. ….. ….. ….. …... ….. …..